Self Assessment :

1. Let $A: \mathbb{R}^{6 \times 1} \rightarrow \mathbb{R}^{5 \times 1}$ and $A: \mathbb{R}^{5 \times 1} \rightarrow \mathbb{R}^{7 \times 1}$ be two linear transformations. Then which of the following can be true.
(a)A and B are one-one
(b) A is one-one and B is not one-one.
(c) A is onto and B is one-one
(d) A and B both are onto.

Ans: A is onto and B is one-one
2. If $T: U \rightarrow V$ is any linear transformation from U to V then
(a) the kernel of T is a subspace of U
(b) the kernel of T is a subspace of V
(c) the range of T is a subspace of U
(d) V is always the range of T

Ans-(a)
3. Which of the following is not a linear transformation ?
(a) $T(x, y, z)=(x, 2 y, 3 x-y)$
(b) $T(x, y, z)=(x-y, 0, y-z)$
(c) $T(x, y, z)=(0,0,0)$
(d) $T(x, y, z)=(1, x, z)$

Ans-(d)
4. Which of the following statements is not true?
(a) If A is any $n \times m$ matrix, then the transformation T defined by $\mathrm{T}(\mathrm{x})=$ Ax is always a linear transformation.
(b)If $T: U \rightarrow V$ is any linear transformation from U to V then $\mathrm{T}(\mathrm{xy})=$ $\mathrm{T}(\mathrm{x}) \mathrm{T}(\mathrm{y})$ for all vectors x and y in U .
(c) If $T: U \rightarrow V$ is any linear transformation from U to V then $\mathrm{T}(-\mathrm{x})=$ $-\mathrm{T}(\mathrm{x})$ for all vectors x in U .
(d) If $T: U \rightarrow V$ is any linear transformation from U to V then $\mathrm{T}(0)=0$ in V for 0 in U .

Ans: (b)
5. Which of the following is a linear transformation ?
(a) $T(x, y, z)=(x+1,4 y, 2 x+y)$
(b) $T(x, y, z)=(x+y, x, y-z)$
(c) $T(x, y, z)=(1,2,3)$
(d) $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1, \mathrm{x}, \mathrm{z})$

Ans-(b)
6. If $T: U \rightarrow V$ be a L.T, then which of the following is correct
(a)Rank $\mathrm{T}+$ Nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
(b) Rank T . Nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
(c) Rank $\mathrm{T}-$ Nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$
(d)Rank $\mathrm{T} /$ Nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$

Ans-(a)
7.If $T: U \rightarrow V$ be a L.T, then which of the following is correct
(a)Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{1\}$
(b) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{2\}$
(c) Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{3\}$
(d)Range $\mathrm{T} \cap$ Ker $\mathrm{T}=\{0\}$

Ans:(d)

